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Abstract—This study is based on a drive test measurement 
campaign in the urban environment of Thessaloniki, Greece, 
utilizing three identical smartphones connected to different 
providers and a portable exposimeter to collect data on 
electromagnetic radiation from mobile networks. The 
investigation specifically addresses the impact of neighbor cells 
in the process of assessing exposure to electromagnetic fields 
(EMF). We study the correlation between RSRP values obtained 
from a mobile app and power density flux from the exposimeter. 
The results demonstrate that considering only the main and the 
first three neighbor - alternative cells from each provider can 
allow for an improved estimation of the spatial variation of 
exposure to EMF. Notably, the study underscores the 
practicality of using smartphones with low-cost applications as 
an effective alternative to expensive instruments for such 
assessments. 

Keywords—Drive Test, EMF exposure, exposure assessment, 
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I. INTRODUCTION  

As on the use of mobile networks continues to grow and 
mobile communication technology advances, the focus on 
electromagnetic exposure becomes increasingly significant, 
particularly in urban environments characterized by extensive 
telecommunications networks and an extended user 
population. The interest in conducting more measurement 
campaigns is driven by concerns of the general public related 
to potential health risks [1] and the essential need of mobile 
operators for Quality of Service (QoS) tests. However, the use 
of specialized equipment in these campaigns, such as 
spectrum analyzers, exposimeters, and electromagnetic field 
(EMF) meters, results in substantial costs. To address this 
challenge, various studies explore alternative methods for 
estimating electromagnetic exposure, such as leveraging 
artificial intelligence models and base station information [2], 
or utilizing mobile metrics from smartphones [3]. In this 
study, we focus on achieving low-cost exposure mapping 
through a mobile application. In Section II the measurement 
campaign plan and setup are described along with the 
methodology which is followed for the data processing and 
analysis. In Section III some representative results are 
presented showing the impact of neighbor cells on each 
measurement, trying to reach a strong correlation between the 
reception levels recorded by the mobile application and the 
exposimeter measurements. 

 
 
 

 

II. DRIVE TEST METHODOLOGY AND PROCESS 

A. Drive Test Measurement Campaign plan and Setup 

Our drive test measurement process consists of a 10-
kilometer route in the city of Thessaloniki (Fig. 1), which was 
repeated for a total of 21 times, from the 5th to the 13th of 
September 2023. The campaign included measurements every 
day of the week (Monday to Sunday), dividing the day into 3 
different time periods (morning, noon, evening). Data 
collection was conducted using an electric scooter traveling at 
an average speed of approximately 15 km/h, while each route 
took about 40 minutes. 

The Drive Test (DT) setup included three identical Xiaomi 
12 Pro 5G smartphones and the EME Spy Evolution 
exposimeter [4] (Fig. 2). The EME Spy Evolution exposimeter 
can isotropically capture and record electromagnetic radiation 
with an uncertainty of ±1.5 dB for frequencies below 4 GHz 
in specific bands selected by the user. The chosen bands for 
our scenario included all downlink bands of mobile networks, 
resulting in a minimum sampling period of 4 seconds. The 
smartphones used the G-NetTrack Pro application [5], a 
mobile network monitoring tool. Each of the three mobiles 
was connected to a different provider - Cosmote, Vodafone, 
and Nova - covering all mobile operators in Greece. The 
application was used to record certain key performance 
indicators (KPIs) of telecommunication networks, with a 
sampling period of 1 second. 

Instrument placement involved two bags.  A bag with three 
compartments was positioned in the area below the scooter's 
handlebars and contained the three mobile phones and a 
second bag was placed at the front of the driver, holding the 
exposimeter (Fig. 2). 

B. Preproccessing 

Our focus will be on the fourth-generation Long Term 
Evolution (4G LTE) network. This choice is driven by two 
factors: (i) The mobile app used has greater capabilities in 
monitoring and recording the parameters of a 4G LTE 
network. (ii) The Fifth Generation New Radio (5G NR) 
technology in Greece is characterized by a Non – Standalone 
(NSA) deployment, meaning that the 5G deployment relies on 
the existing LTE radio access and core network for its 
architecture [6]. 



The application G-NetTrack Pro provides the Reference 
Signal Received Power (RSRP), which is an indicator that 
contributes to the decisions about cell reselection and 
handover. It measures the power in a single resource element 
containing the reference signal [7] and it is expressed in dBm. 
The application also provides the E-UTRA Absolute Radio 
Frequency Channel Number (EARFCN), which can be used 
to determine the absolute frequency at which the LTE system 
operates. 

 The electric (E-) field (V/m) mapping displayed in Fig. 1 
represents the total electric field generated by all DL bands 
along a randomly selected route. For further processing, we 
distinguish the bands 791 – 821, 1805 – 1880, and 2620 – 
2690 MHz that are identified as 4G LTE bands by the mobile 
app. 

C.  Data Analysis 

 The G-NetTrack app has the capability to record and 
monitor essential downlink KPIs and various parameters 
(EARFCN, RSRP, system technology) not only from the 
serving cell but also from up to 18 alternative neighbor cells. 
Given our specific focus on the 4G LTE network, we 
selectively keep data where the system technology is 
explicitly identified as 4G. Since we permitted the 
smartphones to connect to a 5G network, the main cell 
parameters concern the 5G node, and so we identify the 
parameters of the serving 4G cell in 5G NSA as our main cell, 
leading to the reduction of neighbor/alternative cells to 17. 

 Starting the analysis with the mobile application output, 
we initially use the obtained data from each smartphone 
separately to create a Cumulative Distribution Function 
(CDF) plot of the RSRP for the main cell. We also create 

additional plots that add up the signal strength (RSRP) from 
alternative cells. These plots include the total signal strength 
from the main cell and all the chosen alternative cells. For 
example, the “including 3 alternative cells” CDF plots result 
from the summation of the RSRP parameter from the main 
cell, and the 3 cells that correspond to the highest RSRP 
values. After synchronizing the data from all 3 mobile phones 
using the timestamp from the app, we plot the same diagram 
adding all 3 RSRPs for each case (main cell, including 1 
alternative cell, etc.) (Fig. 3). Note that the numbers in dB 
represent the deviation of each distribution from the main cell 
distribution at y = 0.5 (i.e., for the median). 

 We notice that the inclusion of the 1 alternative cell 
increases the signal by more than 3 dB. This pattern appears 
on all routes and for all service providers. It is noteworthy that, 
in most cases, the 1st alternative cell does not correspond to a 
different Base Station but rather represents a different 
frequency band of the same Base Station. This conclusion is 
based on the Physical Cell IP (PCI) and the EARFCN data 
provided by the G-NetTrack app.  

 By observing the CDF plots in Fig. 3, we note that 
considering only 3 alternative cells proves sufficient for a 
reliable estimation of the total received power on the User 
Equipment (UE). To support this, we need to consider the data 
captured from the exposimeter. Although the E-field (V/m) 
and by extension the received power density (W/m2) may not 
have a direct relationship with the RSRP measured by the 
smartphones, a comparison of the correlation coefficient 
between the RSRP and the E-field considering only the main 
cell RSRP vs taking also into account the RSRP of a number 
of alternative cells can be beneficial. 

 To relate the data of the exposimeter and the mobile app 
we need to synchronize the four devices - the three 
smartphones and the exposimeter. In this way all devices share 
a common starting point, but due to different sample rates, one 
exposimeter data point corresponds to four measurement 
points from the app. Knowing that the measurement of the 
electromagnetic field from the exposimeter is very close to an 
instantaneous measurement of the mobile application, we 
must select the best corresponding measurement of mobile 
application data with the exposimeter data. To do that, we plot 
both the normalized power density from the exposimeter and 
the normalized total RSRP, including all 17 alternative cells 
and all providers. We then find the best among the four 
measurements by aligning the peaks in both the exposimeter 
and RSRP data. In cases where peak alignment is challenging, 
we find the correlation coefficient between the power density 
and the RSRP and choose the measurement point with the 
highest correlation coefficient. After this step of 
synchronization, in order to smooth the data, we use a sliding 
window of 2 samples for the exposimeter data, resulting in a 
window of 8 samples for the smartphone data (low-pass 
filtering). 

 

 

 
Fig. 1. Drive Test in Thessaloniki: ~10km route (Route 13). 

  
(a) (b) 

Fig. 2. (a) Setup; (b) Equipment placement: 1. EME Spy Evolution.  
2. Smartphones 



 The final step of data processing involves filtering out 
extremely low and high values in both the exposimeter and 
smartphone data. More precisely, values below 5% and above 
95% of the maximum value are excluded, retaining the mid-
90% of the data. This filtering is applied to each route to 
remove outlier samples. 

III. RESULTS AND DISCUSSION 

In this section we present the results of the correlation 
coefficient analysis between the power density data from the 
exposimeter and the RSRP parameters obtained by the 
smartphone application records. The analysis includes five 
different calculation cases applied after synchronization, data 
smoothing, and data trimming. In the first case the RSRP is 
calculated only from the main cell RSRP of all 3 providers, 
while the second, third fourth and fifth case take into 
consideration the 1, 2, 3 and 17 alternative cells accordingly, 
for all providers. The results of correlation coefficient 
considering all 5 cases and 7 randomly selected routes are 
presented in Fig. 4, including also the “Average” and “Total” 
values. The “Average” presents the mean correlation 
coefficient value calculated across all routes for each case. In 
contrast, the “Total” displays the correlation coefficients 
obtained from considering all routes as a unique dataset. 

An illustrative example of four of the cases for a randomly 
selected route is presented in Fig. 5.  The y-axis represents the 
normalized values of RSRP, while the x-axis the normalized 
values of power flux density. The red line represents the Least 
Squares Regression Line, and the yellow dashed line 
corresponds to the equation y = x. The more closely aligned 
these two lines are, the higher the correlation coefficient.  

The observation that the Least Squares Regression Line 
consistently has a smaller angle to the x-axis than the y = x 
line indicates that the data from the exposimeter 
measurements lie closer to their maximum value compared to 

the measurements from the app. This is expected, since the 
exposimeter is measuring all the received electromagnetic 
radiation in the selected LTE bands (including that created by 
telecommunication traffic) whereas smartphones consider 
only the reference signal from the channel that the UE is 
locked in.  

In Fig. 4 we can see that the correlation coefficient differs 
between routes. For instance, in Route 1, the correlation 
coefficient, including all 17 alternative cells, is approximately 
0.68, whereas in Route 11, it is around 0.4. Notably, Route 1 
was conducted on a Tuesday night with low road traffic, while 
Route 11 took place on a Saturday noon with high road traffic. 
It is reasonable to expect that the correlation between the 
exposimeter and smartphones data would be lower in 
situations with high road traffic. This is because in such 
scenarios, multipath propagation increases due to the elevated 
number of vehicles, and the mobile network experiences 
heavy usage, leading to greater downlink exposure.  

 

 

Fig. 4. Correlation Coefficient results between dosimeter and smartphones, 
from randomly selected routes  

 
                                                                     (a)                                                                                                           (b) 

 
                    (c)                                                                                                          (d) 

   
Fig. 3. CDF plots of RSRP for each service provider, taking into account neighbor cells contribution. 



 Both phenomena specifically impact the exposimeter data, 
which receives the entire frequency band, while the RSRP 
value measured by the smartphones is not affected, resulting 
in a lower correlation between the two.  

 Despite challenges posed by the exposimeter being 
partially shadowed by the body, the smartphones proximity to 
the scooter chassis, the road traffic variations and the 
imperfect isotropy of the devices, the study demonstrates a 
correlation coefficient larger than 0.5 (for both "average" and 
"total" values) between exposimeter and app measurements 
when considering only 3 alternative cells.  

IV. CONCLUSIONS 

This study introduces a method for spatial mapping of 
electromagnetic exposure from the 4G LTE network within an 
urban environment. The approach involves utilizing 
smartphones equipped with a mobile app that records specific 
KPIs. The results show that considering up to 3 alternative 
cells is sufficient for achieving accurate estimations. The 
validity of this methodology is established through a 
measurement campaign conducted in Thessaloniki. The 
correlation coefficient between data received from mobile 
apps and an exposimeter is strong. This allows for the creation 
of heat maps. Additionally, by measuring the value of the 
received electric field from a 4G network at a few spots along 
a route or area, there can be an estimation of the electric field 
for the entire route or area within a given uncertainty. This 
approach provides a low-cost solution for extensive and fast 
measurement campaigns of both exposure and network 

performance. Work is underway to validate the above 
described approach with more measurements.  
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Fig. 5. G - NetTrack Normalized RSRP and EME Spy Evolution normalized power density for Route 17 with a) RSRP: Main Cell Only, b) RSRP: 
Icluding 1 alternative Cell, c) RSRP: Including 3 alternative Cells, d) RSRP: Including all 17 alternative Cells. 


