Authors: Iakovidis, S.; Manassas, A.; Apostolidis, C.; Samaras, T.
Bioelectromagnetics, vol. 46, no. 4, p. e70008, May 2025, doi: 10.1002/BEM.70008
Abstract
The introduction of 5G networks has raised public concerns about potential changes in environmental electromagnetic field (EMF) exposure. This study analyzes continuous monitoring data collected over 2 years (August 2022–October 2024) from 13 frequency-selective monitoring sensors located in Greece’s five largest cities. Focusing on the 3.6 GHz band, we evaluated trends and weekly variations in EMF levels. Results indicated a gradual increase in EMF exposure at 3.6 GHz, driven by the growing penetration of 5G infrastructure and devices. Notably, this band exhibited higher maximum-to-median power density ratios compared to other frequency bands, attributable to active antenna systems’ characteristics and traffic variations. Applying the ICNIRP 2020 guidelines, we found that 30-min averaged values significantly reduced these variations. All measured EMF levels, including maximum values, remained well below Greek and international safety limits. These findings, especially the increasing trend identified for the EMF levels, underscore the importance of continuous monitoring networks for assessing EMF exposure to existing and emerging telecommunications networks and ensuring compliance with safety standards.